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Abstract—Symmetry in running was observed by Marc 
Raibert and was applied to simplify the control of dynamic 
legged systems. In this paper, we show that symmetry also exists 
in biped walking and investigate it using two simplified 2D 
models, that are, the inverted pendulum (IP) model and the 
linear inverted pendulum (LIP) model, both leading to similar 
conclusions. To characterize the symmetry in biped walking, the 
concept of acceleration factor is proposed. Symmetry occurs 
when the acceleration factor is zero, which results in an 
unchanged mid-stance velocity. And an important property of 
symmetry is that the n-step reachable region and the n-step 
controllable region are exactly the same. This means that if we 
can achieve speed B from A in n steps, then we can also achieve 
speed A from B in n steps. Symmetry in walking helps us to 
better understand human walking and also provides an intuitive 
way to control robotic walking. As an example, we propose a 
feedforward controller and a feedback controller, respectively, 
which can regulate the walking speed very effectively. This work 
provides us some new insights to view biped walking. 

I. INTRODUCTION 

The seminal work of Marc Raibert in MIT legged 
laboratory [1] pioneers the control of dynamical legged 
locomotion. During his research of a hopping robot, an 
interesting observation was found, that is, when the robot 
places its foot on a special location called as “neutral point”, it 
will move on a symmetric trajectory and remain its forward 
velocity unchanged. Moreover, the robot speeds up when 
placing its foot ahead of the neutral point and slows down 
when placing its foot behind the neutral point. This 
phenomenon was summarized as the symmetry properties in 
running [2]. Using this property, Raibert designed simple 
controllers for legged systems range from monopod, biped to 
quadruped robots, where the symmetry idea plays a crucial 
role in controlling all of them.   

Inspired by Raibert’s work, we are thinking about whether 
the idea of symmetry can be extended to biped walking. 
However, we find that the robotic groups usually focus on 
passive walking [3], zero moment point (ZMP) [4], hybrid 
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zero dynamics (HZD) [5], and capture point [6], while 
symmetry in walking seems to be rarely studied. In contrast, 
walking symmetry has been widely studied in human and 
physiological researches. For example, in [7], it is found that 
the ground reaction forces of healthy individuals exhibit a 
high degree of symmetry in walking between the left and right 
limbs. In [8], gait symmetry is expressed as a ratio between the 
gait values of the left and right limb for step length, stance 
time, and swing time, and the relation of gait symmetry with 
age is studied. Moreover, asymmetrical walking is found in 
patients with nervous system diseases, such as stroke [9], 
Parkinson [10], and spinal cord injury [11]. Those patients 
have difficulties in interlimb coordination and thus designing 
interventions to restore symmetrical walking patterns is 
important for their rehabilitation. 

The aforementioned studies reveal the importance of 
symmetry in human walking. However, those studies are 
mostly based on human captured data, but there is a lack of 
theoretical analysis. Therefore, this paper attempts to study 
walking symmetry from the mathematical view and finally 
link it to biped walking control. Running and walking can both 
be described by simplified models. For example, running can 
be represented by a spring-loaded inverted pendulum (SLIP) 
model [12], while walking is usually modeled as an inverted 
pendulum (IP) [13] or a linear inverted pendulum (LIP) [14]. 
In IP walking, we keep the stance leg relatively straight in 
each step, which is the way human prefer to take since it is 
more energy efficient compared to other walking gaits [15]. 
While in LIP walking, we bend our knees to keep a constant 
body height, which can be rarely seen except when people 
walk gingerly on ice surface to prevent falling. In robotics 
research, IP walking can be found in related works of passive 
walking [3] while LIP walking is usually related to ZMP 
theory [4]. Since IP walking and LIP walking represent two 
main styles of biped walking, we decide to study walking 
symmetry based on these two models. 

Symmetry in walking affects the velocity transition 
between steps. It should be noted that the work in [4] have 
shown some idea of LIP walking very close to the idea of 
neutral point in running [1], that is, foot placement can 
determine the moving speed. However, that is not the case for 
IP walking, in which the speed is dominated by the push off in 
the end of each step. By proposing the concept of acceleration 
factor, we find that the symmetry in IP walking and LIP 
walking can be analyzed in a unified framework.  

The main contributions of this work are twofold. First, we 
extend the symmetry idea in running to walking, thus 
providing a new perspective to view biped walking. Second, 
we propose the concept of acceleration factor, which provides 
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a unified framework for the analysis and control of both IP and 
LIP walking.  

The rest of this paper is organized as follows. Symmetry in 
IP walking and LIP walking are discussed in Section II and 
Section III, respectively. Then, two kinds of walking speed 
controllers are proposed in Section IV. Finally, the 
conclusions are given in Section V. 

II. SYMMETRY IN IP WALKING 

Fig. 1 depicts the IP walking model, which has a point 
mass on the hip and two massless legs with point feet.  

m


L

P


H


d

P


H
V 



V 


 
 

 
Figure 1.  The inverted pendulum (IP) walking model. 

During walking, the stance leg maintains a constant length 
and the center of mass (CoM) moves along an arc. The 
equation of motion is written as follows 

sin /g L           (1) 

where   is the stance leg angle, g  is the acceleration of 
gravity, and L  is the length of the leg. 

When the swing leg touches the ground, it becomes the 
new stance leg and the previous stance leg starts to swing. 
During this transition, two ground impulsive forces are 
exerted to the robot. One is the push off P


 applied to the 

trailing leg and the other is the heel strike H


 acts on the 
leading leg (push off is assumed to happen just before heel 
strike). Using the principle of linear momentum, we have 

mV mV P H   
   

       (2) 

where ,V V 
 

 are the velocity just after and before switch, 
respectively. After switch, the former stance leg becomes the 
new stance leg, so that     . 

For the IP model, the stance leg are not allowed to leave 
the ground during walking, so the walking speed is limited by 

cos /g L           (3) 

During leg transition, the CoM velocity has a sudden 
change due to the impulsive forces. Fig. 2 shows three cases 
which represent deceleration, equal-velocity, and acceleration, 
respectively. In Fig. 2, tV  is the CoM velocity just after push 
off. By examining the three cases, we find that the velocity 
transition is directly related to the angle of tV , which is 
denoted by   in Fig. 2. 
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Figure 2.  Velocity transition in IP walking. a) α＜0 results in deceleration; 
b) α=0 maintains the same velocity; c) α＞0 results in acceleration. 

Inspired by Fig. 2, we define the acceleration factor for IP 
walking as 

tan /z x
ip t ta V V           (4)  

which represents the vertical/horizontal component ratio of 
the CoM velocity and determines the velocity after transition.  

Since the ground forces P


 and H


 always point upwards, 
  is limited by t t      and the acceleration factor is 
constrained by  

tan tant ip ta           (5)  

where t  is the leg angle at transition, which is related to the 
step length with 

asin( / 2 )t d L          (6)  

Substituting (6) into (5), the relationship between the 
acceleration factor and the step length is 

2 2 2 2/ 4 / 4ipd L d a d L d          (7)  

Using (7), the feasible range of  ipa  with respect to 

different step lengths is drawn in Fig. 3. It can be observed that 
the upper bound and lower bound of ipa  are symmetric about 

the equal-velocity line. 
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Figure 3.  The feasible range of ipa  for IP walking. 

We can use the mid-stance velocity (when 0  ) to 
represent the walking velocity in each step. The relationship 
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of the mid-stance velocity between two successive steps can 
be calculated as follows  

 
 

1

2
2

2

cos
2 (1 cos ) 2 (1 cos )

cos

k

t
k t t

t

V

V gL gL
 

 
 

 


      

 (8)  

where kV  is the mid-stance velocity of step k , atan( )ipa  ,  

and t  is determined by (6). 

From (8), it indicates that ( , )ipd a  (or ( , )t  ) can be used 

as a pair of control inputs, which determines the velocity 
transition between steps. Specially, when 0ipa  , we have 

1k kV V   , which results in a symmetric gait (see Fig. 4).  

Vk Vk+1

mid-stance mid-stanceleg transition

 

Figure 4.  Symmetry in one step for IP walking. bx  represents the absolute 

horizontal position of the CoM 

Besides, we find another symmetry in two steps, that is, if 
we first take an action pair ( , )ipd a  in a step and then take 

( , )ipd a  in the next step, the mid-stance velocity will remain 

unchanged (this can be easily verified from (8)). This results 
in the symmetry in two steps, which is shown in Fig. 5.  

Vk

Vk+1

mid-stance mid-stanceleg transition

Vk-1

leg transitionmid-stance

 
Figure 5.  Symmetry in two steps for IP walking.  

Furthermore, we investigate the reachable region problem, 
that is, for a given kV , to find the boundary of 1kV  . Actually, 
this is an inverse problem of the controllable region concept in 
[14], which aims to finding all possible values of kV  that can 

lead to 1kV  . Interestingly, we have the following conclusion. 

Theorem 1: The reachable region and the controllable 
region are the same for any given velocity. 

Proof: Denote the reachable region and controllable 
region of aV  as 1R  and 1C , respectively. Assume that 

1 1R C , which means that there is an element bV  in 1R  but 

not in 1C . However, if we can achieve bV  from aV  by taking 

action ( , )ipd a , then we can also achieve aV  from bV  by 

taking action ( , )ipd a . This indicates that bV  should belong 

to 1C , which is contradictory to the assumption that 1
bV C . 

Therefore, the reachable region should always equal to the 
controllable region. This completes the proof. 

We find it difficult to get the explicit expression of the 
reachable region. However, we have shown in [13] that the 
maximum reachable velocity can be obtained when the leg 

transition satisfies / cos(2 ) cos /g L    while the 
minimum reachable velocity happens when the leg transition 

satisfies cos /g L  . Therefore we can use numerical 
methods to obtain the reachable region. We have adopted 
Matlab’s “ode45” function with an event option.  For 
convenience,  we denote the reachable region as 

      1
1 min 1 max|k k k k kV V f V V f V   C    (9)  

where minf  and maxf  are interpolation functions obtained 
from the numerical solutions which represent the minimum 
and maximum reachable velocity, respectively (the minimum 
reachable velocity is set to zero if it is negative). Using (9), the 
two-step reachable region can also be obtained, that is  

      2
1 min min 1 max max| ( ) ( )k k k k kV V f f V V f f V   C  (10)  

and so for the n-step reachable region. 

 
Figure 6.  The n-step reachable region for IP walking. The yellow, green, 
and blue areas represent the 1-step, 2-step, and 3-step reachable regions, 

respectively. 

Fig. 6 shows the n-step reachable region for n = 1, 2, 3  (we 
have adopted 21m, 10 m/sL g  ). The black line represents 

the equal-velocity line, which corresponds to 0ipa  . Above 

the black line is the acceleration zone, while under it is the 
deceleration zone. From Fig. 6, it can be seen that the upper 
bound and the lower bound of the n-step reachable region are 
symmetrical about the equal-velocity line, which is actually a 
visualized representation of Theorem 1. Besides, it can be 
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observed that the two-step reachable region has covered most 
of the feasible velocity space (the box area), which validates 
an interesting observation in [14] that “two steps is enough”. 

III. SYMMETRY IN LIP WALKING 

The LIP walking model is depicted in Fig. 7. The 
difference with IP walking is that the stance leg changes its 
length to maintain a constant CoM height during walking 
( 1mh   is used in this paper). And the leg transition happens 
in a smooth way where the CoM velocity maintains the same. 
The double stance phase is also assumed to be instantaneous. 

m

h

dx  
Figure 7.  The linear inverted pendulum (LIP) walking model. 

During the continuous phase, the system follows the 
dynamics of a linear inverted pendulum, which is 

 /x gx h          (11) 

where x  is the horizontal position of the hip relative to the 
stance foot.  

In leg transition, the former swing leg becomes the new 
stance leg, so we have 

,x x d x x              (12) 

where d  is the step length. 

Unlike IP walking, the ground force will never be negative 
in LIP walking. However, the leg length has a maximum value, 
which puts the following limits on x  

 2 2 2
maxx h l         (13) 

where maxl  is the maximum value of the leg length 

( max 1.2 ml   is used in this paper). In this paper, we assume 
that the leg can swing as fast as we want so there are no speed 
limitation for LIP walking. 

Three cases of LIP walking are shown in Fig. 8. Unlike IP 
walking, the CoM velocity keeps unchanged during leg 
transition in LIP walking. However, the mid-stance velocity 
changes if the swing leg and stance leg are asymmetric during 
leg transition. Therefore, we define the acceleration factor for 
LIP walking as follows 

lip st swa d d           (14)  

It can be verified that 0lipa   indicates equal-velocity, 

0lipa   indicates acceleration and 0lipa   indicates 

deceleration, which are the same as in IP walking.   

Similarly, the symmetry in LIP walking for one step and 
two steps are shown in Fig. 9 and Fig. 10, respectively. 

sw std dsw std d sw std d
std swdstd swd std swd

kV 1kV kV 1kV  kV
1kV tV tV tV

 

Figure 8.  Velocity transition in LIP walking. If sw std d , the mid-stance 

velocity increases; if sw std d , the velocity remains unchanged; if sw std d , 

the mid-stance velocity decreases. 

Vk Vk+1

mid-stance mid-stanceleg transition

 
Figure 9.  Symmetry in one step for LIP walking.  

Vk

Vk+1

mid-stance mid-stanceleg transition

Vk-1

leg transitionmid-stance

 
Figure 10.  Symmetry in two steps for LIP walking.  
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Figure 11.  The feasible range of lipa  for LIP walking. 

116

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on January 07,2022 at 05:33:52 UTC from IEEE Xplore.  Restrictions apply. 



  

We assume that the CoM always locates between the 
stance foot and swing foot during leg transition. Then the 
boundary of lipa  is  

0 , if

2 2 , if

lip m

m lip m m

a d d d

d d a d d d d

  
     

     (15)  

where 2
max 1md l   is the upper limit for std  and swd . 

With (15), the feasible range of  lipa  with respect to 

different step lengths is drawn in Fig. 11. It can be observed 
that the upper bound and lower bound of lipa  are also 

symmetric about the equal-velocity line. 

For LIP walking, the relationship of the mid-stance 
velocity between two successive steps is derived as follows  

2
1 /k k lipV V gda h                   (16) 

It can be proved that (16) retains the same property as (8) 
in IP walking so that Theorem 1 still holds. For (16), we can 
obtain the reachable region explicitly, that is 

2 2 2 2
1/ /k m k k mV gd h V V gd h         (17)  

(the minimum reachable velocity is set to zero if 2 2 /k mV gd h  
is negative). We draw the n-step reachable region for LIP 
walking in Fig. 12. It can be observed that the upper bound 
and the lower bound of the n-step reachable region are also 
symmetric about the equal-velocity line. The difference to IP 
walking is, the region is not enclosing anymore, it can extend 
along both axes (we only show the part within 5 m/s). 

 
Figure 12.  The n-step reachable region for LIP walking. The yellow, green, 

and blue areas represent the 1-step, 2-step, and 3-step reachable regions, 
respectively. 

IV. WALKING SPEED CONTROL 

Using the results obtained in the previous sections, it 
becomes easy to design walking controllers to regulate the 
walking speed. Here we give two examples: a feedforward 

controller which achieves the desired speed by taking the least 
steps, and a feedback controller, which gradually regulate the 
speed to the desired value in a smooth way. 

First, the feedforward controller is given in Fig .13. It uses 
all means (adjust both step length and acceleration factor) to 
achieve the desired velocity as soon as possible, which is 
time-optimal (or dead-beat). In this case, the control action 
pair ( , )d a  ( a  represents ipa  or lipa ) that leads to the 

maximum/minimum reachable velocity should be 
precomputed for all velocity. 

Select control action (d,a) that 
leads to the maximum/minimum 

reachable velocity in the next step

Select control action (d,a) that 
leads to the desired velocity in 

the next step

Current velocity 
within one-step 

controllable region?

Desired velocity, current velocity

YesNo

 
Figure 13.  The feedforward controller (for both IP walking and LIP 

walking).  

Next, we design feedback controller which only uses the 
acceleration factor to regulate the walking speed while the 
step length can be set freely. The feedback controller for IP 
walking is designed as follows 

 1 1tanh ( )ip r ka a V V          (18)  

where 1  is a positive constant and 

2 2
1 / 4a d L d          (19)  

And the feedback controller for LIP walking is designed as  

 2 2tanh ( )lip r ka a V V          (20)  

where 2  is a positive constant and 

2

, if

2 , if
m

m m

d d d
a

d d d d


   

        (21)  

Remark: 1 2,a a  can also be selected as other positive 
values smaller than the selected values here. 

Simulation results are given in Figs. 14~17. It can be seen 
that the feedforward controller can achieve the desired 
velocity using minimum steps, i.e., it takes exactly n steps for 
the initial velocity within n-step controllable region. While the 
feedback controller takes more steps and converge to the 
desired velocity gradually. However, the feedback controller 
is simpler and gives an additional freedom to adjust the step 
length freely, which is particularly useful when walking on 
rough terrains with foot placement constraints. In practice, we 
can decide on which method to be used according to our 
control goals. 
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Figure 14.  Velocity curve for IP walking using feedforward controller.  

 
Figure 15.  Velocity curve for IP walking using feedback controller. 

1 2, 0.6d    are adopted. 

 
Figure 16.  Velocity curve for LIP walking using feedforward controller.  

 
Figure 17.  Velocity curve for LIP walking using feedback controller. 

2 0.4, 0.6d    are adopted. 

V. CONCLUSIONS 

Symmetry is widely studied in Mathematica and art, maybe 

because it provides us a sense of beauty. In legged locomotion, 
symmetry also plays an important role, which is shown in both 
running and walking. This work investigates the symmetry in 
biped walking and builds a unified framework to study the 
symmetry in both IP walking and LIP walking. When we walk, 
symmetry usually occurs in steady state of a periodic gait 
while asymmetry can break this steady state and prompt the 
transfer to a new periodic gait. Walking asymmetry is also 
highly related to nervous system diseases. By studying the 
symmetry in walking and make use of it, we gain more 
understanding on human walking and also obtain a useful tool 
to facilitate robotic walking control. Future work will focus on 
extending this work to 3D walking.  
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